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ABSTRACT

Vision-language-action models (VLAs) trained on large-scale robotic datasets have
demonstrated strong performance on manipulation tasks, including bimanual tasks.
However, because most public datasets focus on single-arm demonstrations, adapt-
ing VLAs for bimanual tasks typically requires substantial additional bimanual
data and fine-tuning. To address this challenge, we introduce TwinVLA, a modular
framework that composes two copies of a pretrained single-arm VLA into a coor-
dinated bimanual VLA. Unlike monolithic cross-embodiment models trained on
mixtures of single-arm and bimanual data, TwinVLA improves both data efficiency
and performance by composing pretrained single-arm policies. Across diverse
bimanual tasks in real-world and simulation settings, TwinVLA outperforms a
comparably-sized monolithic RDT-1B model without requiring any bimanual pre-
training. Furthermore, it narrows the gap to state-of-the-art model, π0 which rely
on extensive proprietary bimanual data and compute cost. These results establish
our modular composition approach as a data-efficient and scalable path toward
high-performance bimanual manipulation, leveraging public single-arm data.

1 INTRODUCTION

Thanks to publicly available large-scale robotic datasets, vision-language-action models (VLAs) have
shown impressive performance in single-arm robotic manipulation, generalizing across diverse tasks,
objects, and environments (Zitkovich et al., 2023; Open X-Embodiment Collaboration et al., 2024;
Kim et al., 2024; Black et al., 2024). However, extending these successes to bimanual manipulation
remains challenging, as public bimanual datasets are scarce, and existing approaches often rely on
large, proprietary datasets that require thousands of hours of data collection and curation (Black et al.,
2024), limiting reproducibility and progress.

Can we build strong bimanual VLAs without collecting or fine-tuning on large bimanual datasets
by leveraging existing single-arm data? Recent cross-embodiment learning work typically trains
monolithic models on multi-robot datasets (Open X-Embodiment Collaboration et al., 2024) by
employing embodiment-specific action decoders (Octo Model Team et al., 2024; Doshi et al., 2024;
NVIDIA et al., 2025) or shared, zero-padded action spaces (Liu et al., 2024; Black et al., 2024).
Although promising, differences in observation and action spaces introduce heterogeneity, forcing a
single model to handle disparate action spaces, and monolithic training underutilizes the modular
structure inherent to bimanual tasks.

A modular perspective on bimanual manipulation is supported by neuroscience: human bimanual
manipulation is the coordination of arm-specific motor primitives rather than a single monolithic
controller. Dedicated neural circuits, such as the Supplementary Motor Area (SMA) and the corpus
callosum, orchestrate and synchronize the two arms (Sadato et al., 1997; Swinnen, 2002). Similar
principles have proven effective in vision-language modeling, where interaction between modality-
specific backbones improves its efficiency and effectiveness (Liang et al., 2024).

Inspired by these insights, we propose TwinVLA, a modular architecture that operationalizes
this coordination-centric view. Instead of training from scratch, TwinVLA leverages a pretrained
single-arm VLA. Specifically, we first design a lightweight, compact single-arm VLA, which we
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Figure 1: Overview of TwinVLA. Inspired by humans’ two-arm coordination for bimanual manipu-
lation, TwinVLA duplicates a VLM backbone pretrained on cross-embodiment single-arm data (Left)
to form two arm-specific branches linked via Joint Attention (Right). Shared inputs (ego-centric
views, language instructions) are routed via a mixture-of-experts (MoE) to improve computational
efficiency. Only the VLM backbone is duplicated, keeping the increase in model size minimal.

call SingleVLA (Appendix A). We pretrain SingleVLA for single-arm manipulation on the OXE
dataset (Open X-Embodiment Collaboration et al., 2024). We then duplicate this SingleVLA and
integrate the two “twin” instances through a lightweight coordination method. This design is highly
data-efficient: it eliminates the need for a bimanual pretraining dataset and achieves strong perfor-
mance with only a small amount of bimanual demonstrations for fine-tuning.

To integrate two SingleVLAs into a bimanual policy, TwinVLA utilizes a joint attention (Liang
et al., 2024) across the twin models, as illustrated in Figure 1. This allows the twin SingleVLAs
to exchange information and coordinate their actions, while preserving their pretrained capabilities.
This approach is made feasible without significant overhead, as we duplicate only the VLM backbone
and utilize a Mixture-of-Experts (MoE) to efficiently manage shared inputs. In contrast to monolithic
cross-embodiment models (Liu et al., 2024; Octo Model Team et al., 2024; Doshi et al., 2024), our
approach yields better performance and data efficiency, significantly reducing the need for large-scale
bimanual data collection and compute.

We evaluate TwinVLA across a broad range of environments, including a complex, long-horizon
real-world task and a diverse suite of bimanual manipulation tasks in simulations. Despite leveraging
only public single-arm data and limited bimanual fine-tuning data, TwinVLA achieves performance
comparable to state-of-the-art bimanual policies.

In summary, our main contributions are threefold:

• We propose a novel modular architecture for bimanual manipulation that integrates two copies
of a pretrained SingleVLA with a lightweight coordination method based on joint attention with
MoE, enabling synchronized two-arm control.

• We present a data-efficient paradigm that adapts our twin architecture into a capable bimanual
policy for a target task by fine-tuning on only a small bimanual dataset, crucially without
requiring additional pretraining, thereby eliminating the need for large-scale bimanual data.

• Through extensive experiments across real and simulated bimanual tasks, TwinVLA matches or
surpasses state-of-the-art models trained on far larger bimanual data and compute.

Together, these findings identify our modular SingleVLA composition approach as a scalable, efficient
path to high-performance bimanual manipulation.

2 RELATED WORK

Vision-Language-Action models (VLAs) represent a promising approach to robotic control. They
adapt large pretrained Vision-Language Models (VLMs) (Liu et al., 2023b; Karamcheti et al., 2024;
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Figure 2: (a) Data efficiency. While RDT-1B and π0 use 1M + single-arm data with sizable bimanual
data, TwinVLA uses ∼0.5M single-arm data and only 50 target bimanual data. (b) Compute
efficiency. RDT-1B and π0 require high compute (exceeding 1,000 H100 GPU-days), whereas
TwinVLA achieves higher or comparable performance at substantially lower compute (25 H100
GPU-days).

Chen et al., 2024) to robotic control (Open X-Embodiment Collaboration et al., 2024; Khazatsky
et al., 2024) by fine-tuning on action-labeled data. This process enables them to translate language
instructions and visual context into grounded actions. Early VLA models explore various strategies for
connecting VLMs with action generation (Ahn et al., 2022). RT-2 (Zitkovich et al., 2023) tokenizes
actions as part of the model’s output vocabulary, whereas RoboFlamingo (Li et al., 2024b) uses a
separate continuous action head. Recent work, such as π0 (Black et al., 2024) and CogAct (Li et al.,
2024a), further integrates a denoising policy with a VLM to improve action execution accuracy.

Bimanual manipulation policies are essential for enabling robots to perform complex tasks that
require coordinated two-handed control, such as folding laundry (Bersch et al., 2011; Avigal et al.,
2022), assembling parts (Stavridis & Doulgeri, 2018), or wiping the plate Black et al. (2025); Chi
et al. (2024b). Learning effective bimanual policies is challenging due to high-dimensional, tightly
coupled action spaces and the scarcity of high-quality bimanual demonstrations (Lee et al., 2020;
Xie et al., 2020). Consequently, specialist methods, such as Diffusion policy (Chi et al., 2023) and
ACT (Zhao et al., 2023), trained only on target-task demonstrations, struggle on precise, long-horizon
bimanual tasks (Black et al., 2024).

To mitigate data scarcity, prior work has largely pursued a straightforward approach: training a single,
unified model through large-scale bimanual data collection and computationally intensive pretraining.
RDT-1B (Liu et al., 2024) is fine-tuned on over 6K bimanual episodes after extensive pretraining on
the large-scale OXE dataset (Open X-Embodiment Collaboration et al., 2024), reportedly requiring
a month on 48 H100 GPUs. Similarly, π0 (Black et al., 2024) relies on a 10, 000-hour proprietary
dataset with substantial computational cost. Moreover, because their data are not publicly accessible,
reproducibility and broader adoption are limited.

In contrast to such monolithic cross-embodiment policies and compute-heavy bimanual pretraining,
our approach adopts a modular, coordination-centric design. We first train a SingleVLA on large-
scale public single-arm data, duplicate the pretrained SingleVLA and couple them via joint attention,
and then fine-tune it on bimanual tasks—allowing each stage to benefit from the most suitable
data (see Figure 2). This composition-based approach avoids bimanual pretraining, requires only a
small amount of bimanual fine-tuning, better preserving the capabilities of single-arm policies, and
improves data and compute efficiency.

3 PRELIMINARIES

This paper aims to develop a data-efficient framework for learning bimanual manipulation policies by
building upon pretrained single-arm Vision-Language-Action (SingleVLA) models. This section for-
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malizes the single-arm and bimanual settings, and describes the conditional flow-matching objective
for training action heads of VLAs.

3.1 FORMULATING THE BIMANUAL VLA POLICY

Our goal is to extend a pretrained SingleVLA πsingle into a bimanual policy πtwin applicable to target
bimanual tasks. A VLA π(At | ot) predicts an action chunk At = (at, at+1, . . . , at+T−1) of length T

from an observation ot. For single-arm manipulation, the observation osingle
t = ((l, Iego)t, (Iwrist, d)t)

includes a language prompt l, a ego-centric image Iego (shared input), and an arm-specific wrist image
Iwrist with proprioception d (arm-specific input). We train πsingle(At | osingle

t ) to predict the action
chunk for one arm. For bimanual manipulation, the observation aggregates both right (R) and left (L)
arm-specific input, otwin

t =
(
(l, Iego)t, (I

R
wrist, d

R)t, (I
L
wrist, d

L)t
)
, and the policy πtwin(A

R
t , A

L
t | otwin

t )
outputs a joint action chunk for right and left arms.

3.2 TRAINING VLAS WITH CONDITIONAL FLOW MATCHING

We aim for the VLA model to predict continuous robot actions from observations. Each observation
ot is tokenized: language via a language tokenizer, images via a vision encoder, and proprioception
via an MLP encoder. We append a learnable readout token rt to the observation token sequence,
which signals the model to produce actions. These tokens are fed into the VLM backbone, and the
embedding ht corresponding to the readout token rt is obtained from the final hidden state.

To enable continuous action prediction from VLM outputs, we attach an action head using conditional
flow matching for both πsingle and πtwin. The action head vθ(A

τ
t , ht, dt) is trained with the following

flow-matching loss function:

LT (θ) = Ep(At|ot),q(Aτ
t |At)∥vθ(Aτ

t , ht, dt)− u(Aτ
t | At)∥2, (1)

where ht is the VLM output hidden state, dt is proprioception. The objective trains the action
head to predict the reference flow from a noised action chunk Aτ

t to the target action chunk At,
where τ ∈ [0, 1] denotes the flow matching timesteps. We adopt a simple linear Gaussian path
q(Aτ

t | At) = N(τAt, (1− τ)I), which has demonstrated robust performance across domains.

Specifically, we first sample a noisy action Aτ
t = τAt + (1 − τ)ϵ, where the noise ϵ ∼ N(0, I)

and the timestep p(τ) = Beta( 0.999−τ
0.999 ; 1.5, 1), following π0 (Black et al., 2024). The action head

vθ(A
τ
t , ht, dt) and the VLM are jointly trained end-to-end to predict the reference flow u(Aτ

t | At) =
ϵ−At.

During inference, we sample actions using the forward Euler integration method. Starting from
A0 ∼ N(0, I), we iteratively update the action using the learned flow vθ(A

τ
t , ht, dt):

Aτ+δ
t = Aτ

t + δvθ(A
τ
t , ht, dt), (2)

where we set the sampling step n = 10 and use δ = 1
n . The entire model, including the vision

encoder and VLM backbone, is trained in an end-to-end manner.

4 TWINVLA

TwinVLA is a modular architecture that transforms a pretrained SingleVLA into a coordinated biman-
ual policy through three core principles. First, we selectively duplicate modules from a pretrained
SingleVLA to form a bimanual policy (Section 4.1). We then introduce a joint attention mechanism
to enable effective cross-arm coordination between the duplicated VLMs (Section 4.2). Finally,
we integrate a Mixture-of-Experts (MoE) layer for shared observations to enhance computational
efficiency without sacrificing performance (Section 4.3).

4.1 SINGLE-ARM POLICY DUPLICATION

To construct TwinVLA from SingleVLA, we initialize the twin policies for the left and right arms
by copying the pretrained SingleVLA. However, instead of duplicating the full model, we share the
vision encoder and DiT (Peebles & Xie, 2022) action head while fully replicating the VLM. Each arm
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Figure 3: (a) Causal attention mask for joint attention. It preserves causality while processing
shared, left, and right inputs in parallel. (b) TwinVLA joint attention mechanism. The two VLMs
share information, and the shared modality (l, Iego)t is further processed by MoE to more efficiently
leverage both VLMs.

has its own lightweight proprioception encoder. This design yields a compact 1.3B-parameter model,
comparable to the 1.2B-parameter RDT-1B, without significantly increasing computational cost.

Visual inputs are processed by the shared encoder, and each VLM produces readout tokens that
are jointly decoded by the shared DiT. This design is motivated by the principle that general vi-
sual understanding (image encoding) and low-level motor control (action decoding) are largely
embodiment-agnostic skills that can be effectively shared for both arms. In contrast, the VLM, which
decides output action given encoded observation, is fully replicated to allow for specialized control.

4.2 JOINT ATTENTION FOR CROSS-ARM FUSION

We integrate arm-specific inputs using a joint attention mechanism inspired by Mixture of Trans-
formers (MoT) (Liang et al., 2024). As illustrated in Figure 3(b), this is achieved by sharing only
the self-attention layers across the VLM backbones, while other components like the projection
networks operate independently for each arm. Unlike π0 (Black et al., 2024), which links VLM
with an action head, we connect two VLMs directly. The detailed pseudocode of joint attention is
presented in Algorithm 1.

Causal joint attention mask. Effective joint attention requires appropriate attention masking.
Standard LLMs use a lower-triangular attention mask for causal prediction. To support joint attention
among the shared and arm-specific inputs, we designed the attention mask for TwinVLA as shown
in Figure 3a. Specifically, we embed lower-triangular masks within each arm’s region while treating
the shared modality as fully accessible. Each arm also attends to half of the other’s tokens, enabling
symmetric cross-arm interaction without violating autoregressive constraints.

4.3 MIXTURE-OF-EXPERTS INTEGRATION

In TwinVLA, each VLM receives both shared and arm-specific inputs to produce single-arm actions.
Feeding the shared modality (l, Iego)t redundantly to both VLMs is inefficient, as it increases token
length and VRAM usage in a way that hinders the practical training of large models. To address this,
we apply a Mixture-of-Experts (MoE) mechanism that routes the shared modality tokens between
both VLMs, reducing token length while preserving representational power.

While the MoE effectively shares the feedforward networks (FFNs) between the twin VLM backbones,
other key components like projection layers remain duplicated. To address this, we implement an
effective form of task arithmetic (Tang et al., 2024). We process an input through the corresponding
component in each VLM and then average their outputs. This output-averaging technique functionally
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simulates a single shared layer without averaging the parameter itself. This is illustrated in the center
of Figure 3b. Thanks to this change, we enable training the model with a batch size of 8 on a single
40GB GPU. Detailed implementation is provided in Appendix C.3.

Attention re-weighting. A potential side effect of introducing new arm-specific tokens is that the
model’s learned attention patterns can be disrupted, shifting focus away from the pretrained shared
modalities. To mitigate this and preserve the valuable pretrained knowledge, we re-scale the attention
scores for the shared modality. This maintains pretrained modality importance, allowing the model
to bypass an initial adaptation phase and focus directly on the target task—a benefit evidenced by a
lower initial loss and converged loss during fine-tuning.

5 EXPERIMENTS

In this paper, we propose TwinVLA to achieve strong bimanual manipulation performance with
minimal bimanual data by fully leveraging a single-arm VLA pretrained on abundant single-arm data.
Our empirical studies aim to answer the following questions:

• How does TwinVLA compare to state-of-the-art methods across diverse bimanual tasks, without
any bimanual pretraining (Sections 5.2 and 5.3)?

• How quickly can TwinVLA adapt to new bimanual tasks (Section 5.4)?
• Does TwinVLA retain core VLA properties—language-following and robustness to unseen

scenes and instructions (Sections 5.5 and 5.6)?
• How much does each key design choice contribute to overall performance (Section 5.7)?

5.1 COMPARED METHODS

We evaluate TwinVLA against three bimanual manipulation policies, each representing a different
point in the design space.

• RDT-1B (Liu et al., 2024): This serves as our direct baseline. With a comparable size(1.2B
vs. TwinVLA’s 1.3B parameters), it represents the standard monolithic approach that requires
substantially larger resources (1.4M trajectories, ∼1,440 H100 days vs. 0.5M single-arm data,
∼25 H100 days).

• π0 (Black et al., 2024): We include this as a skyline, as this is 3.3B-parameter VLA trained
on over 10K hours of proprietary robot data. Our goal is to assess how closely TwinVLA can
approach this performance ceiling with far greater efficiency.

• Diffusion Policy (DP) (Chi et al., 2023): This is a strong baseline method in low-data regime
with 271M parameters, used to demonstrate the crucial benefits of pretraining.

Put carrot into bagAnubis robot

Brush into dustpanTake off towel

(a) Real-world tasks

Tabletop Sim (5 tasks)

RoboTwin 2.0 (50 tasks)

(b) Simulation tasks

Figure 4: Experimental setups. (a) We evaluate TwinVLA on three real-world bimanual tasks using
an Anubis robot. (b) We further analyze TwinVLA on a large suite of simulation tasks: 5 tasks in
Tabletop-Sim and 50 tasks in RoboTwin 2.0.
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Figure 5: Success rates on real-world tasks. TwinVLA outperforms RDT-1B and DP on average.
Moreover, TwinVLA shows comparable performance with π0 while trained only on target data.

5.2 REAL-WORLD EXPERIMENTS

Environment. For real-world experiments, we use a dual-arm robot, Anubis (Kang et al., 2025), as
shown in Figure 4a. Anubis has two 6 DoF arms with parallel-jaw grippers. The robot is equipped
with two wrist-mounted cameras and a single ego-centric view camera.

Tasks. We design three long-horizon tabletop manipulation tasks which requires careful coordination
and accurate motions: carrot to bag, brush to dustpan, and take towel off. We collect
50 episodes for each task using absolute EEF control. We fine-tune all methods for each task, and
evaluate them with 20 rollouts per task.

Results. As presented in Figure 5, our model, TwinVLA, significantly outperforms its direct
competitor, RDT-1B. This result is particularly noteworthy given that TwinVLA was pretrained on a
substantially smaller single-arm dataset (0.5M vs. RDT-1B’s 1.4M) with far less computational cost,
demonstrating the data efficiency of our approach. The comparatively low performance of DP further
underscores the critical importance of pretraining. Among all methods, π0 ultimately demonstrated
the best overall performance.

5.3 SIMULATION EXPERIMENTS

RoboTwin 2.0. We use the RoboTwin 2.0 benchmark (Chen et al., 2025a), consisting of 50 bimanual
tasks. Adhering to the official evaluation protocol, we fine-tune a model per task with 50 generated
demonstrations and perform 100 test rollouts under both “Easy” and “Hard” settings. For Easy tasks,
test scenes match the training data, but the instructions are novel. The Hard tasks introduce variations
in texture, object position, and height. For compared methods, we use the results reported from
RoboTwin 2.0 (Chen et al., 2025a).

Tabletop-Sim. To assess dexterous scenarios beyond tasks in RoboTwin, we develop Tabletop-Sim1,
a tabletop simulation environment based on dm_control (Tunyasuvunakool et al., 2020) and assets
from ALOHA2 (Team et al., 2024) and GSO object dataset (Downs et al., 2022). We design 5
representative tasks that require precise bimanual coordination. Specifically, we define four single-
tasks and one multi-task: dish-drainer, handover-box, shoes-table, lift-box, and put X
box into Y pot. In the “Hard” tasks, we vary background textures and objects. We collect 50
episodes on each task using absolute EEF control, and fine-tune a model per task, and perform 500
evaluation rollouts for both “Easy” and “Hard” settings.

Results. The results in Figure 6 show the average success rates of TwinVLA and compared methods.
DP, trained from scratch, shows the worst performance, highlighting the importance of pretraining.
Once again, we observe that TwinVLA outperforms RDT-1B in most scenarios, except for the
RoboTwin Hard tasks, and achieves comparable performance with π0 by effectively leveraging
single-arm data and modularity of bimanual manipulation. Notably, in Tabletop-Sim Easy tasks,
TwinVLA even outperforms π0, which is trained on an extensive corpus of high-quality bimanual

1Our simulation setup is similar to the concurrent work Aloha-Sim, released by Google DeepMind (Google
DeepMind, 2025).

7



Preprint

Easy Hard Easy Hard Average0%

20%

40%

60%

80%

100%

Su
cc

es
s 

Ra
te

s

28.0

0.6

24.9
21.4 18.7

34.5

13.7

61.6

39.8 37.4
42.0

8.9

75.8

42.9 42.4
46.4

16.4

72.5

45.6 45.2

RoboTwin Tabletop-Sim

Diffusion Policy RDT-1B TwinVLA 0 (SOTA Reference)

Figure 6: Average success rates for diverse bimanual tasks. Despite being pretrained solely on
single-arm datasets, TwinVLA outperforms other methods except π0.

pretraining data. This demonstrates TwinVLA’s advantages in scenarios demanding higher dexterity
and significant bimanual coordination.

5.4 DATA EFFICIENCY
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Figure 7: Average success rates
on the Tabletop-Sim Easy tasks.
Models are evaluated after fine-
tuning with 20, 35, and 50 demon-
strations.

TwinVLA exhibits data efficiency in two key aspects: pretrain-
ing and fine-tuning. For pretraining, it is efficient because it
does not require supplemental bimanual data. For fine-tuning,
it learns new tasks rapidly because its structural inductive bias
facilitates the efficient transfer and application of its pretrained
single-arm knowledge. We validate this efficiency in Tabletop-
Sim Easy environment, comparing model’s average success
rates with varying amounts of demonstration data. As illus-
trated in Figure 7, TwinVLA exhibits a steep learning curve.
Despite a modest start with 20 demonstrations, it quickly sur-
passes the performance of RDT with just 50 demonstrations,
highlighting its exceptional data efficiency.

5.5 LANGUAGE FOLLOWING EVALUATIONS

A known challenge is that fine-tuning VLMs on robotic data can degrade their ability to faithfully
follow nuanced instructions. We therefore evaluate how effectively our model preserves this core
capability in a multi-task setting. The “Put X box into Y pot” task involves 3 box colors (X) and
2 pot colors (Y), resulting in a total of 6 possible instruction combinations. As observed in Figure 8a,
TwinVLA outperforms both RDT-1B and π0. We believe this performance stems from effectively
preserving the knowledge acquired during single-arm pretraining through careful fine-tuning.

5.6 POLICY ROBUSTNESS

One of the advantages of VLAs is their robustness to unseen situations and novel language instructions,
thanks to pretraining. As shown in Figure 6, TwinVLA outperforms RDT-1B by 3.3% even in the
Hard setup of Tabletop-Sim, which involves different textures and objects.

The RoboTwin benchmark, both in the Easy and Hard setups, uses evaluation language instructions
that are unseen during training. Here, TwinVLA again shows 7.48% better performance than RDT-1B
in the Easy setup. Although TwinVLA’s performance on the RoboTwin Hard tasks is 3.72% lower
than that of RDT-1B, it still outperforms a non-pretrained Diffusion policy by 9.38%. This result
demonstrates that TwinVLA possesses sufficient robustness as a bimanual VLA, even without being
pretrained on large-scale bimanual manipulation data.

5.7 ABLATIONS

In this section, we conduct a sequential ablation study to analyze the cumulative impact of our key
design choices on performance. Starting from the full TwinVLA model, we progressively remove
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Figure 8: Language following task and ablation results. (a) We evaluate average success rates on
the language following tasks in Tabletop-Sim. (b) Ablation studies in the real world and Tabletop-Sim
Easy tasks.

each component in a specific order: first Attention Re-weighting, followed by MoE integration, and
finally Joint Attention. This method reveals how performance degrades as each component of our
architecture is stripped away. The results on our real-world and Tabletop-Sim Easy tasks are reported
in Figure 8b.

Attention re-weighting. Removing the attention re-weighting mechanism (w/o Re-weighting)
increased the initial fine-tuning loss by 40% and decreased final performance by 1.1% and 1.2% in
simulation and real world, respectively. This demonstrates that our re-weighting strategy successfully
mitigates the input distribution shift between pretraining and fine-tuning.

MoE integration. Building on the previous ablation, we next remove the MoE integration (w/o MoE).
This additional change increased the token sequence length by 28% and increased VRAM usage by
21%, making VLA training more burdensome. Surprisingly, it also further decreases the success rate
by 1.1% in simulation, suggesting that MoE integration eliminates redundant processing of shared
inputs while maintaining the performance.

Joint attention. Lastly, removing the joint attention mechanism (w/o Joint attn) cause the most
significant additional performance drops by 4.0% and 8.3% in simulation and real world, respectively.
This impact is greater than other components, confirms that the joint attention is the critical mechanism
for the bimanual manipulation requires coordination between both arms.

Effect of single-arm pretraining. As a separate, foundational experiment, we assess the role of
pretraining by training a model from scratch without OXE dataset (Scratch). This resulted in a 4.6%
performance drop in simulation and a stark 32.9% in real world. This result confirms that effective
cross-arm coordination is essential for bimanual manipulation and validates joint attention as the
critical mechanism for achieving it in our model.

Twin structure. While we have confirmed that joint attention effectively connects the two modules,
a crucial question remains: how does this approach compare to a monolithic model that is inherently
unified from the start? To answer this, we revisit our comparison against RDT-1B, a monolithic model
of a comparable 1.2B parameter size. The results are telling: TwinVLA outperforms RDT-1B by
16.2% in the real world, 5.0% in simulation, and 25.1% in language-following tasks. This provides
strong evidence that the inductive bias from the Twin Structure itself is highly beneficial for bimanual
manipulation, validating our design choice over a monolithic approach.

6 LIMITATIONS

Since our work adapts a pre-trained single-arm VLA’s representations for bimanual tasks, a current
limitation is that the model forgets its single-arm manipulation skills after fine-tuning. Future research
into mechanisms that prevent this forgetting could address data scarcity by integrating diverse data,
while also improving model explainability and better generalization capability to unseen tasks.

Moreover, the choice of action space is critical for VLA models, particularly for knowledge transfer.
We adopt absolute end-effector (EEF) pose control because it provides an embodiment-agnostic
representation essential for our single-arm transfer strategy. In contrast, joint positions are specific to
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a robot’s degrees of freedom (DOF), making them unsuitable for direct policy transfer. We believe
that exploring relative absolute actions (Chi et al., 2024a) or developing a shared representation
across diverse embodiments could enable more efficient transfer.

7 CONCLUSION

In this paper, we introduce TwinVLA, a data-efficient VLA model for bimanual manipulation.
TwinVLA provides a new perspective on solving bimanual manipulation under scarce bimanual
data by leveraging abundant single-arm datasets. From a small amount of bimanual demonstration
data, TwinVLA learns to coordinate two copies of a SingleVLA pretrained on large-scale single-
arm data via our proposed joint attention. Through exhaustive experiments both in the real world
and simulation, TwinVLA demonstrates its data-efficient learning of bimanual tasks compared
to prior monolithic approaches. We believe this principle of bridging data availability gaps via
leveraging modularity opens up exciting possibilities for other complex robotic domains, such as
mobile manipulation, thereby broadening the impact of large-scale robotic learning.
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APPENDIX

A SINGLEVLA: EFFICIENT SINGLE-ARM POLICY DESIGN AND PRETRAINING

Eagle2 1B
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Figure 9: Overview of SingleVLA architecture design and pretraining method.

This section presents the design of the SingleVLA πsingle. While SingleVLA follows established VLA
conventions, our key novelty is a duplication strategy that enables the construction of TwinVLA. Prior
7B-scale models (Kim et al., 2024; 2025; Li et al., 2024a) are prohibitively large for such duplication,
motivating a more efficient, lightweight SingleVLA (Fig. 9). To acquire generalizable knowledge, we
pretrain SingleVLA on a 0.5M-trajectory subset of the OXE mix, enabling transfer across diverse
environments and embodiments. Pretraining ran for 120k steps and took about 5 days on a cluster
with 5× H100 GPUs.

To ensure effective transfer to bimanual manipulation, it is crucial to choose an appropriate action
space. Heterogeneous joint configurations across robots induce incompatible action spaces and
complicate joint training. Prior work mitigates this with robot-specific decoders or high-dimensional
zero-padded spaces (NVIDIA et al., 2025; Doshi et al., 2024; Octo Model Team et al., 2024; Black
et al., 2024; Liu et al., 2024). Instead, we convert all actions into absolute end-effector (EEF) poses,
providing a consistent, semantically meaningful representation across robots that naturally extends to
bimanual control. For rotation, we adopt a 6D representation (Zhou et al., 2019), which is well suited
for neural network learning.

A.1 PRETRAINING

SingleVLA is pretrained on an OXE subset (0.5M trajectories); dataset composition and sampling
rates appear in Table 1. We adopt the dataset loader from the OpenVLA (Kim et al., 2024) codebase
and apply sampling according to the designated weights. Because some datasets (e.g., Kuka and
BC-Z) include failed trajectories, we pre-process to retain only successful ones. All actions are
converted to absolute EEF control with 6D rotations, resulting in a 10-Dimensional action space. We
further apply frequency matching as described below.

Frequency matching. Robotic datasets differ in control frequency, making fixed-length action-
chunk prediction misaligned in real time. For example, a 20-step chunk spans ∼ 7 seconds in
RT-1 (Brohan et al., 2022) (3 Hz) but only ∼ 1.3 seconds in DROID (Khazatsky et al., 2024) (15 Hz).
Mixing low-frequency data like OXE (Open X-Embodiment Collaboration et al., 2024) with high-
frequency datasets can degrade pretraining quality. Inspired by π0-FAST (Pertsch et al., 2025), which
uses DCT (Ahmed et al., 1974) to map 1-second actions into a consistent space, we perform frequency
matching via interpolation: all datasets are resampled to 20 Hz, improving temporal alignment and
transfer to high-frequency bimanual tasks.

A.2 HYPERPARAMETERS AND COMPUTE

Table 2 summarizes training hyperparameters for SingleVLA and TwinVLA. SingleVLA pretraining
used 5× H100 GPUs for about 5 days. TwinVLA fine-tuning used 1× L40S GPU for about 2 days.
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Table 1: SingleVLA pretraining datasets and sampling percentages.

Dataset Sample Percentage
RT-1 (Brohan et al., 2022) 24.49%
Kuka (filtered) (Yadav et al., 2024) 12.40%
BridgeV2 (Walke et al., 2023) 13.74%
Taco Play (Rosete-Beas et al., 2022) 3.10%
Jaco Play (Dass et al., 2023) 0.50%
Viola (Zhu et al., 2022a) 1.00%
Berkeley Autolab UR5 (Chen et al., 2023) 1.28%
Stanford Hydra (Belkhale et al., 2023) 4.73%
Austin Buds (Zhu et al., 2022b) 0.22%
NYU Franka Play (Cui et al., 2022) 0.88%
FurnitureBench (Heo et al., 2023) 2.40%
Austin Sailor (Nasiriany et al., 2022) 2.33%
Austin Sirius (Liu et al., 2023c) 1.84%
DLR EDAN (shared control) (Vogel et al., 2020; Quere et al., 2020) 0.05%
UT Austin Mutex (Shah et al., 2023) 2.38%
Berkeley FANUC manipulation (Zhu et al., 2023) 0.82%
CMU Stretch (Bahl et al., 2023; Mendonca et al., 2023) 0.16%
BC-Z (filtered) (Jang et al., 2021) 7.90%
FMB (Luo et al., 2025) 7.40%
Dobb-E (Shafiullah et al., 2023) 1.50%
DROID (Khazatsky et al., 2024) 10.70%

Table 2: Key hyperparameters for TWINVLA training.

Hyperparameter SingleVLA TwinVLA
Global batch size 256 8
Precision FP32/BF16 (mixed) FP32/BF16 (mixed)
Gradient clipping (L2) 1.0 1.0
Learning rate 1× 10−4 1× 10−4

LR scheduler cosine cosine
Warm-up ratio 0.01 0.05
Total steps 120k 100k
Optimizer AdamW AdamW
Weight decay 1× 10−5 1× 10−5

Adam ϵ 1× 10−8 1× 10−8

Vision backbone frozen true true
Image augmentation true false

A.3 SINGLEVLA VLM ABLATION

We validate SingleVLA’s VLM choice in the LIBERO (Liu et al., 2023a) environment using several
VLMs. The LIBERO actions are converted to absolute EEF 6D control. Due to computational limits,
we directly fine-tune the pretrained VLM checkpoints on LIBERO (i.e., without additional pretraining
on LIBERO). Each model is evaluated with 500 rollouts per task suite under identical random seeds.
Results are shown in Table 3.

Table 3: Performance of different VLMs on LIBERO.

VLM Spatial Object Goal Long Average
Qwen2VL-2B (Wang et al., 2024) 80.4% 88.6% 83.8% 43.0% 73.9%
InternVL2.5-1B (Chen et al., 2025b) 64.6% 84.8% 78.4% 46.2% 68.5%
Eagle2-1B (Li et al., 2025) 73.4% 85.4% 90.8% 46.6% 74.0%
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Although Qwen2VL is widely regarded as robust, Eagle2-1B achieves comparable or slightly better
results while using roughly half the parameters and providing significantly faster inference. We
therefore select Eagle2-1B as the VLM backbone for SingleVLA.

Table 4: Performance of pretrained SingleVLA on LIBERO.

Method Spatial Object Goal Long Average
SingleVLA (Eagle2-1B, no pretraining) 73.4% 85.4% 90.8% 46.6% 74.0%
SingleVLA (pretrained) 92.4% 94.5% 93.5% 63.7% 86.0%
OpenVLA (Kim et al., 2024) 84.7% 88.4% 79.2% 53.7% 76.5%
Octo (Octo Model Team et al., 2024) 78.9% 85.7% 84.6% 51.1% 75.1%

After pretraining SingleVLA with Eagle2-1B, we fine-tune it on LIBERO to assess single-arm
capability. As shown in Table 4, the pretrained SingleVLA substantially improves performance and
even surpasses the 7B model OpenVLA, indicating that the learned single-arm policy is both effective
and sufficiently strong to benefit the bimanual policy.

B IMPLEMENTATION DETAILS

Table 5: Training hyperparameters for baseline models.

Method # of params Learning rate Lr scheduler Batch size Training steps
TwinVLA 1.3B 1e-4 cosine 8 100k
RDT-1B 1.2B 1e-4 constant 8 100k
DP 271M 2e-5 cosine 8 100k
π0 3.3B 2.5e-5 cosine 8 100k

We use the official implementation of RDT-1B. Diffusion Policy and π0 are evaluated via the public
LEROBOT release (Cadene et al., 2024), with two modifications for a fair comparison. First, the
LEROBOT evaluation script normalized images differently from training; we corrected this to match
the training pipeline.

All models are fine-tuned with the same number of steps and batch size so that the total number of
training samples is consistent across methods. For learning rates, we began with each model’s default
and tuned within a similar compute budget. In practice, defaults worked well for DP and RDT-1B.
For π0, we observed better final returns by slowing the cosine decay; we therefore extended the LR
schedule from 30k to 100k steps.

C TWINVLA DETAILS

C.1 JOINT ATTENTION

The joint attention in TwinVLA is fundamentally almost identical to the implementation in the
Mixture-of-Transformers (MoT) (Liang et al., 2024) study. While MoT has transformers for text,
image, and speech inputs, in TwinVLA, the inputs for the left and right arms correspond to these.

Furthermore, MoT requires an operation to group mixed inputs by modality and then restore their
original order. However, this process is unnecessary in TwinVLA because the inputs are fed in a fixed
sequence: left arm, then right arm. The detailed computation process is shown in Algorithm 1.

C.2 ATTENTION RE-WEIGHTING

Attention re-weighting is a technique we employ to improve the efficiency of adapting a pretrained
SingleVLA into a bimanual TwinVLA. Constructing TwinVLA involves adding a second set of
arm-specific modality tokens. During operation, input tokens are processed by their corresponding
arm’s VLM backbone, pass through a joint attention layer, and then flow back to the individual VLMs.
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Algorithm 1 Joint Attention Computation

1: Let x = (x1, . . . , xn) be the input sequence with xi ∈ Rd; let mi ∈ {left arm, right arm} denote
the modality of xi.

2: LetM = {left arm, right arm}.
3: for each modality m ∈M do
4: Im ← {i : mi = m} ▷ Indices for modality m
5: Xm ← {xi : i ∈ Im} ▷ Group tokens by modality
6: Qm ←Wm

Q Xm, Km ←Wm
K Xm, Vm ←Wm

V Xm ▷ Modality-specific projections
7: end for
8: Q← ⋃

m∈M Qm, K ← ⋃
m∈M Km, V ← ⋃

m∈M Vm ▷ Concatenate

9: A← softmax
(

QK⊤
√
dk

)
V ▷ Global self-attention

10: for each modality m ∈M do
11: Om ←Wm

O A|Im ▷ Modality-specific output projection
12: Hm ← Xm + LayerNormm

attn(Om) ▷ Residual & norm
13: Fm ← FFNm(Hm)
14: Ym ← Hm + LayerNormm

ffn(Fm)
15: end for
16: return {Ym : m ∈M}
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Figure 10: Due to the increased token length and softmax normalization, each VLM of TwinVLA
refers to arm-specific inputs more than during pretraining, requiring the model to adapt.

However, the softmax normalization within this joint attention layer presents a challenge. Although
the total sequence length doubles, the number of tokens for shared inputs remains unchanged.
Consequently, the proportion of attention allocated to these shared inputs is significantly diluted
compared to the pretraining phase, creating a distribution shift for each VLM backbone’s inputs, as
illustrated in Figure 10.
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Figure 11: By re-weighting the attention weights, we can make each VLM refer to each modality
identically to its pretraining stage, resulting in no adaptation and a lower initial loss.

This discrepancy requires greater adaptation effort for TwinVLA during fine-tuning on bimanual tasks.
To address this, we introduce a simple re-weighting trick immediately after the attention scores are
calculated. Specifically, we double the attention weights corresponding to the shared modality tokens
and then re-normalize all weights to sum to one. This adjustment effectively restores the proportional
attention each VLM backbone assigns to the shared inputs, aligning it with the pretraining conditions
(see Figure 11). Applying this method reduced the initial fine-tuning loss by approximately 40%.
While TwinVLA could learn bimanual manipulation without this technique, the required adaptation
period would be substantially longer. This simple trick makes the process significantly more efficient
and faster. We illustrate our implementation with simple pseudocode in Algorithm 2.

Algorithm 2 Attention Re-weighting

Input: Attention weights A, Scale factor α = 2
2: Output: Re-weighted attention weights A′

function APPLYREWEIGHTING(A, c, α)
4: Create mask M ▷ Create a mask for arm-specific inputs

Areweighted ← A⊙ (M+ α · ¬M) ▷ Apply scaling to attention weights using the mask
6: Areweighted ← Normalize(Areweighted) ▷ Normalize the new weights

return A+ (Areweighted −A) ▷ Return weights as a residual update for gradient flow
8: end function

C.3 MOE INTEGRATION

To enable sharing of the shared inputs between the two-arm models, we duplicated the entire VLM
transformer. This necessitates different strategies for sharing the FFNs and the other components.
This section details the strategy used for each component of the transformer.

Feed-Forward Networks. To share FFNs, we adopt the common approach of using a gating-based
MoE. In standard MoE, multiple FFNs are included within a transformer, and a gating mechanism
activates a subset for each input. In TwinVLA, the two VLMs act as distinct FFN experts. Because
shared inputs (e.g., egocentric views or language prompts) may have asymmetric relevance for each
arm, the gating mechanism learns how much each FFN should contribute to processing the shared
input. This approach is widely used and has been shown to improve training stability and preserve
information more effectively than simple averaging (Shazeer et al., 2017).

Other Components. Beyond FFNs, elements such as layer normalization and projection layers also
require integration. For these, we apply task arithmetic (Tang et al., 2024), merging the two VLMs
via simple parameter averaging with weight λ = 0.5. This extends MoE-style computation to the full
transformer architecture.
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D REAL-WORLD ROBOT EXPERIMENT DETAILS

D.1 INITIAL DISTRIBUTION

Carrot to bag Brush  to dustpan Take towel off

Figure 12: Initial distribution of each tasks in real-world.

To illustrate the diversity of initial configurations in our dataset, Figure 12 shows an overlay of the
first frames from all 50 demonstrations. For each demonstration, the position and orientation of the
objects were randomized, resulting in a unique starting setup.

D.2 QUANTITATIVE RESULTS

Table 6: Success rates for each model across all subtasks. The best overall performance is
highlighted in bold. As π0 is included as a skyline, as this is excluded from this direct comparison.

Task Subtask DP TwinVLA RDT-1B π0

Carrot to bag
Pick up carrot 0.50 1.00 0.75 0.85
Put carrot 0.20 0.70 0.40 0.65
Close bag 0.15 0.65 0.35 0.65

Brush to dustpan
Move the brush 0.70 1.00 1.00 1.00
Pick up the brush 0.65 1.00 1.00 1.00
Put onto dustpan 0.35 0.80 0.40 0.80

Take towel off
Dragging 0.40 0.90 0.80 0.95
Half off 0.35 0.70 0.70 0.85
Entirely off 0.20 0.55 0.60 0.65

We provide the quantitative results on real-world experiments in subtask-level detail in Table 6. The
results reveal the main bottleneck in each long-horizon task. The Carrot to bag task is challenging
when inserting the carrot, which requires precisely opening the bag. The Brush to dustpan task’s
bottleneck is the high-precision insertion of the brush into the dustpan. Lastly, in Take towel off
rack, the final unfolding is difficult—unlike the simple initial steps—as it requires a successful
switch between the arms. In the next subsection, we show qualitative results from these specific
bottleneck phases.

D.3 QUALITATIVE RESULTS

Figure 13 presents qualitative results highlighting challenging situations for each task. A check mark
was used when the model succeeded with a probability above 0.5, an X mark for probabilities below
0.3, and an exclamation mark icon for intermediate cases.

• Carrot to bag. π0 showed the highest success rate, followed by TwinVLA, RDT, and DP.
DP failed to interact meaningfully with the bag, especially struggling to grasp the cover properly.
RDT failed to complete the task successfully, primarily due to its inability to accurately localize
and grasp the bag’s opening.

• Brush to dustpan. DP struggled either to grasp the brush itself or to successfully insert it.
Interestingly, the RDT managed to grasp the brush well but lacked precision during the insertion.
In this task, TwinVLA and π0 demonstrated the same success rate.
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Figure 13: Qualitative visualization of real world experiments.

• Take towel off. DP mostly failed to pull the doll from a distant position toward the center,
while the other models succeeded in pulling it to the center but showed differences in towel
removal. Both RDT and π0 tended to successfully remove one side of the towel and then easily
remove the other side as well. In contrast, TwinVLA struggled with removing the remaining
part and repeated the same action. This is likely because the longer action chunk length of RDT
and π0 helped them overcome the multimodality challenge.

D.4 ROBOT HARDWARE SPEC

We conduct our real-world experiments using a custom-built robot named Anubis. The platform
features a teleoperation system inspired by the Mobile ALOHA setup (Fu et al., 2024). Each arm has
6 DoF and is equipped with a parallel gripper and a wrist-mounted camera. At the center of the robot,
an Intel RealSense camera is mounted on a height-adjustable mechanism, serving as the ego-centric
view camera. Details are described in Table 7. Anubis is equipped with a 3-wheel omni-directional
base that supports planar locomotion; however, in this work, the mobility feature is not utilized.

Table 7: Anubis Robot Hardware Specifications.

Component Specification

Base Type 3-wheel omni-directional chassis
Mobility DOF 3 (X, Y, Yaw)
Arm DOF 2 × (6 DOF + gripper) = 14
Total Action Space 17 DOF
Wrist Cameras Intel RealSense D405
Gripper Parallel transparent gripper (hole design, ALOHA-

style)
Power System 3 × Greenworks 40V 5.0Ah batteries (PC, wheels

& leader/follower)
Frame 3D-printed custom components Figure 14: The Anubis robot.
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E SIMULATION EXPERIMENT DETAILS
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Figure 15: Task list of Tabletop-Sim.

E.1 TABLETOP-SIM

To test bimanual policies in simulation, we developed Tabletop-Sim, a new benchmark specifically
engineered to evaluate dexterous manipulation skills, in contrast to other benchmarks (Mu et al.,
2025) that primarily focus on task diversity. The benchmark comprises four single-task environments
and one multi-task setup. Our task selection was guided by the taxonomy in DexMimicGen (Jiang
et al., 2025), which categorizes bimanual tasks into: (1) parallel (two arms are doing separate tasks
simultaneously), (2) coordinated (two arms are closely working together), and (3) sequential (one
arm completes the task, and the other arm takes over) interactions. Using a custom controller similar
to GELLO (Wu et al., 2024), we collected 50 demonstrations for each single-task and 60 for the
multi-task environment.

The multi-task setup is a language-following task requiring the policy to place a specific box (out of
three) into a designated pot (out of two) based on a language instruction. This task is designed to
rigorously assess a model’s instruction-following capabilities, as Vision-Language-Action (VLA)
models often disregard instructions after fine-tuning.

Furthermore, to evaluate policy robustness, we established two difficulty settings for the four single-
tasks. The original tasks are designated as the Easy setting, while a Hard variant for each task
incorporates challenging variations such as different textures, object models, and the presence of
distractor objects. Figure 15 presents snapshots of each task.

To ensure reproducibility and support future research, we will fully open-source this simulation and
dataset.

E.2 QUANTITATIVE RESULTS

This section describes the detailed results for the simulation tasks. The results for Tabletop-Sim are
listed in Table 8, while the results for the RoboTwin 2.0 benchmark are in Table 9. For RoboTwin,
the results for other baselines were referenced from the official benchmark results.

Although π0 achieves the highest overall performance, this result is unsurprising considering its
larger model size and pretraining dataset. Meanwhile, TwinVLA demonstrates consistently superior
performance compared to RDT-1B, a model of a similar scale.
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Table 8: Performance comparison on the Tabletop-Sim benchmark.

Tabletop-Sim

Dish drainer Handover box Lift box Shoes table Put X cube in
to Y pot

Model Easy Hard Easy Hard Easy Hard Easy Hard

DP 0.686 0.590 0.180 0.086 0.100 0.006 0.028 0.260 -
RDT-1B 0.810 0.780 0.694 0.508 0.300 0.076 0.660 0.192 0.555

TwinVLA 0.954 0.836 0.780 0.530 0.452 0.044 0.848 0.306 0.806
PI-0 0.774 0.520 0.788 0.444 0.512 0.136 0.824 0.660 0.792

Table 9: Success rates of TwinVLA for 50 bimanual tasks in RoboTwin 2.0.

Task Name Easy Hard Task Name Easy Hard

adjust bottle 0.97 0.35 place can basket 0.40 0.00
beat block hammer 0.77 0.10 place cans plasticbox 0.47 0.08
blocks ranking rgb 0.58 0.00 place container plate 0.77 0.04
blocks ranking size 0.03 0.00 place dual shoes 0.18 0.03
click alarmclock 0.33 0.01 place empty cup 0.50 0.01
click bell 0.58 0.13 place fan 0.34 0.00
dump bin bigbin 0.80 0.34 place mouse pad 0.50 0.00
grab roller 0.96 0.22 place object basket 0.48 0.03
handover block 0.17 0.00 place object scale 0.06 0.00
handover mic 0.84 0.02 place object stand 0.20 0.02
hanging mug 0.10 0.05 place phone stand 0.34 0.02
lift pot 0.87 0.07 place shoe 0.48 0.04
move can pot 0.45 0.05 press stapler 0.62 0.26
move pillbottle pad 0.32 0.02 put bottles dustbin 0.08 0.04
move playingcard away 0.61 0.35 put object cabinet 0.39 0.16
move stapler pad 0.11 0.00 rotate qrcode 0.54 0.03
open laptop 0.80 0.17 scan object 0.11 0.04
open microwave 0.03 0.01 shake bottle horizontally 0.96 0.55
pick diverse bottles 0.16 0.08 shake bottle 0.93 0.58
pick dual bottles 0.18 0.12 stack blocks three 0.00 0.00
place a2b left 0.27 0.05 stack blocks two 0.26 0.00
place a2b right 0.15 0.01 stack bowls three 0.77 0.15
place bread basket 0.11 0.03 stack bowls two 0.84 0.11
place bread skillet 0.20 0.01 stamp seal 0.16 0.01
place burger fries 0.67 0.13 turn switch 0.25 0.15

Average
Diffusion Policy 0.280 0.006
RDT-1B 0.345 0.137
TwinVLA 0.420 0.089
π0 0.464 0.163
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